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Abstract
Cave animals, compared to surface-dwelling relatives, tend to have reduced eyes and pig-

ment, longer appendages, and enhanced mechanosensory structures. Pressing questions

include how certain cave-related traits are gained and lost, and if they originate through the

same or different genetic programs in independent lineages. An excellent system for explor-

ing these questions is the isopod, Asellus aquaticus. This species includes multiple cave

and surface populations that have numerous morphological differences between them. A

key feature is that hybrids between cave and surface individuals are viable, which enables

genetic crosses and linkage analyses. Here, we advance this system by analyzing single

animal transcriptomes of Asellus aquaticus. We use high throughput sequencing of non-

normalized cDNA derived from the head of a surface-dwelling male, the head of a cave-

dwelling male, the head of a hybrid male (produced by crossing a surface individual with a

cave individual), and a pooled sample of surface embryos and hatchlings. Assembling

reads from surface and cave head RNA pools yielded an integrated transcriptome com-

prised of 23,984 contigs. Using this integrated assembly as a reference transcriptome, we

aligned reads from surface-, cave- and hybrid- head tissue and pooled surface embryos

and hatchlings. Our approach identified 742 SNPs and placed four new candidate genes to

an existing linkage map for A. aquaticus. In addition, we examined SNPs for allele-specific

expression differences in the hybrid individual. All of these resources will facilitate identifica-

tion of genes and associated changes responsible for cave adaptation in A. aquaticus and,
in concert with analyses of other species, will inform our understanding of the evolutionary

processes accompanying adaptation to the subterranean environment.
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Introduction
Cave animals have long interested evolutionary biologists [1]. With reduced eyes and pigmen-
tation, elongated appendages, enhanced mechanosensory structures, and unique life history
traits, they are unusual and interesting animals (reviewed in [2, 3]). Strikingly, many of these
cave characteristics are found in multiple different species, including vertebrates and inverte-
brates [2, 3]. Therefore, cave animals not only provide a system for the study of many unique
characteristics, but also allow comparisons of these traits across distantly- and closely-related
species. Furthermore, the study of cave animals allows for examination of characters that are
reduced, for example eye loss and pigment loss, but also allows for the examination of gains
such as longer appendages, longer life spans, larger embryos, and enhanced sensory features
such as taste buds in cave vertebrates and longer chemosensory cells in invertebrates [4, 5, 6,
7].

Studying cave animals, especially from a genetic perspective, has been challenging histori-
cally because of the difficulties in generating molecular tools and genetic resources in non-
model species. However, the advent of next-generation sequencing technology, alongside
reduced costs and higher throughput techniques, enable advanced genetic analyses in virtually
any species. As a result, transcriptomes are now available for a number of cave-dwelling ani-
mals including a cave beetle, a cave remipede crustacean, and three different species of cave
fish [8, 9, 10, 11, 12].

The majority of genetic resources, including genetic markers, genomic sequences, and tran-
scriptomic sequences, have been developed for Astyanax mexicanus, a characid fish found in
Mexico. Surface and cave-dwelling populations interbreed and produce fertile offspring
(reviewed in [13]). Molecular resources available for this species include a draft genome,
sequenced transcriptomes for tissues from various life stages and populations, and numerous
well-populated linkage maps [14, 10, 11, 15]. In addition, many years of study provide much
information about the genetic, developmental, and taxonomic underpinnings of this system
(Reviewed in [3]). Although Astyanax has provided insight into many of the outstanding ques-
tions in cave evolution, the degree to which this information can be applied to other cave
organisms remains unclear. For instance, to what extent are different genetic pathways and
selective pressures responsible for adaptation in other species of cave animals? To address this
question, it is necessary to develop resources for additional cave-dwelling species.

Another cave-dwelling species that has the potential to be an excellent genetic model is Asel-
lus aquaticus, an isopod crustacean found throughout Europe. Similar to Astyanax mexicanus,
this species has both cave and surface dwelling populations that can interbreed and produce
fertile offspring [16]. The presence of distinct (but able to interbreed) morphotypes renders A.
aquaticus a promising species for comparisons with Astyanax mexicanus. Existing resources
for A. aquaticus include a linkage map and hundreds of genetic markers [17, 18]. In addition,
multiple loci responsible for eye and pigmentation traits have been mapped [17]. One locus
was observed each for the following five pigmentation traits: presence versus absence of pig-
mentation, red versus orange and brown pigmentation, light versus dark pigmentation, and
stellate versus diffuse pigmentation. In addition, we mapped a locus responsible for eye pres-
ence versus absence (a qualitative trait) and a different locus responsible for eye size (a quanti-
tative trait).

However, there is no genome sequence or catalogue of expressed sequence tags (ESTs) avail-
able yet for A. aquaticus. Therefore, sequence information pertaining to gene coding regions is
limited only to the candidate genes isolated previously [17]. To address this lack of genomic
data, our primary goal is to sequence, assemble and annotate transcriptomes for A. aquaticus
to identify genes associated with a range of cave-associated traits. Secondary goals include
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demonstrating the utility of these resources to discover genes and alleles associated with mor-
phological and behavioral differences between cave and surface populations, which will
enhance the collective database of genetic and genomic information for cave animals.

Materials and Methods

Transcriptome assembly
Four samples were subjected to high-throughput sequencing: the head from a surface dwelling
male, the head from a cave dwelling male, the head from a hybrid male (generated from a cave
male and a surface female), and around thirty pooled surface individuals from 70% of embry-
onic development to hatching. The pooled surface embryos and hatchlings sample was
sequenced to identify genes that may be expressed during embryonic development but not in
adult animals. These samples were all laboratory-reared except for the cave male which was
caught and kept in captivity for several months. The founding surface population was from
Planina Polje and the founding cave population from Planinska Jama (Pivka channel), both
located in Slovenia. The field studies did not include any legally protected or endangered spe-
cies. They were not conducted in national parks or other protected areas requiring permission
under national or regional legislation. We reared animals as described previously [17]. RNA
was extracted from our samples using TRIzol (Invitrogen) and the provided protocol. RNA
was quantified using a Qubit Fluorometer (Invitrogen) and cDNA libraries were constructed
using the SMARTer cDNA synthesis kit (Clontech). Sequencing was performed using the
Roche 454 platform [19] yielding thousands of reads per sample: surface head– 184,618, cave
head –75,190, hybrid head 205,502, and surface embryos/hatchlings– 171,713. This Transcrip-
tome Shotgun Assembly project has been deposited at DDBJ/EMBL/GenBank under the acces-
sion GDKY00000000. The version described in this paper is the first version, GDKY01000000.

Comparison of assembler programs for 454 sequence data, with an emphasis for non-model
systems, have suggested that SeqMan NGen (DNASTAR.v.11.0) is a program that can identify
both known and novel transcripts and yields the best overall assembly [20; 21]. NGen was used
to generate an integrated de novo transcriptome assembly from both surface and cave individu-
als to ensure equal representation of both morphotypes in the reference trancriptome. This
assembly was generated using the recommended parameters optimized for 454 de novo tran-
scriptome assembly, with the settings: matchsize = 21; match spacing = 75; minimummatch
percentage = 85; match score = 10; mismatch penalty = 20; gap penalty = 30; max gap = 15. We
then aligned sequencing reads from surface-, cave-, hybrid- and embryo-hatching head tissue
RNA pools to our reference template (the consensus sequences from the de novo transcrip-
tome) for our subsequent SNP analyses.

Transcriptome annotation
To assign identities to each of the consensus sequences from the de novo assembly, we utilized
the online tool Blast2GO (B2G) [22]. The program uses the BLASTX algorithm through the
NCBI server and the non-redundant (nr) database to collect the 20 top hits for each unknown
sequence with an e-value cut-off of 1.0 x 10−3. Additionally, B2G retrieves all available gene
ontology (GO) terms for each gene sequence. The process of GO assignment selects terms
from the gene ontology database obtained through the “Mapping” step in B2G. The annotation
is carried out using a stringent approach, which applies an annotation rule (AR) found on the
ontology terms. This aims to identify the most specific terms with a high level of reliability. For
our analyses, we employed the default settings, with the parameters: e-value hit filter: 1.0 x
10−6; annotation cutoff: 55; GO weight: 5; Hsp-Hit Coverage Cutoff: 0.
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Genotyping
To add genes to the existing linkage map of A. aquaticus, we first searched through the tran-
scriptome sequences of A. aquaticus for genes that are known from the literature to be involved
in either eye development or pigmentation. In addition to the A. aquaticus sequences, we also
interrogated the gene sequences from other related/recent arthropod transcriptome projects
including those of two other species of isopods–Caecidotea forbesi and Caecidotea bicrenata
[19]. We searched through the Caecidotea sequences for genes involved in eye development
and pigmentation because we hoped that sequences from either Caecidotea species would help
us to design successful degenerate primers to amplify orthologous genes from A. aquaticus.
After obtaining a piece of the coding sequence in Asellus aquaticus of each candidate gene, we
isolated flanking sequences for each gene/contig using a GenomeWalker library (Clontech).
Then, we identified a polymorphic marker, either a size difference or a SNP, within this
sequence between cave and surface individuals and designed primers to amplify this polymor-
phic marker (Table 1). Next, we genotyped 8–15 individuals from our previously published
cross [17] by size separation or Sanger sequencing. PCR conditions were as described [17].

ArrayStar Analysis
To quantify the number of reads for each contig/gene in our different samples, we remapped
our raw 454 sequencing reads to the reference transcriptome. With this, we identified the num-
ber of sequencing reads that mapped to each consensus sequence using the QSeq module in
the program ArrayStar (DNASTAR.v.11.0). This program quantifies the raw read count as the
sequencing reads that uniquely align to each reference sequence, and additionally, calculates
normalized read counts with RPKM normalization methods [23]. This information allowed us
to call the read depth for each SNP of each contig and was used for our allele-specific analysis.

Results and Discussion

De novo assembly of A. aquaticus samples using 454 Sequencing
Technology
To increase the genetic resources available for the isopod A. aquaticus, we analyzed transcrip-
tomes of this species. This Transcriptome Shotgun Assembly project has been deposited at
DDBJ/EMBL/GenBank under the accession GDKY00000000. Similar to studies of other spe-
cies that have cave and surface morphotypes, like the fish Astyanax mexicanus [10, 13], we pro-
duced an integrated assembly, including reads from both surface- and cave-dwelling morphs.
The resulting integrated transcriptome yielded a total of 23,984 contiguous sequences, with an
N50 value of 800 bp and average contig depth of 7. The contig “N50 value” is a metric used
commonly to describe the overall quality of a de novo assembly. In short, N50 is a weighted
median statistic, wherein 50% of the entire assembly has contigs equal or larger to this value.

Subsequently, we performed gene annotation of our consensus sequences using the online
software program Blast2GO (B2G; [22]). More than 4,000 of our BLAST hits were identified in
“other” or non-model species (Fig 1A) indicating that multiple species were represented due to
severe limitations of genomic resources in Crustacea [24]. However, the most common organ-
ism comprising our species distribution analysis, yielding 714 top hits, was the crustacean
Daphnia pulex, which is the only species of crustacean with a sequenced genome [25].

The contigs from our integrated de novo transcriptome assembly ranged from 21 to 3490 bp
(Fig 1B), with an average length of 500 bp. Further analyses demonstrated that each sequence
shared 60–80% similarity with their respective top hit (Fig 1C). Again, this result is expected,
considering that the most closely related available genome from the subphylum Crustacea is a
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Table 1. Primers used for genotyping the candidate genes and in the case of Ruby, degenerate PCR.

Primer Sequence

Ruby degenerate F (Ruby degF) ATGAARGNATHGGNATG

Ruby degenerate R1 TCRTCYTTYTGYTCNGGRTC

Ruby degenerate R2 (first) TCNGGRCANACYTCYTCRAA

Ruby F TTGCATTCATTTGGACATTTGTGGA

Ruby R TGCTGTTTAGTTGATCTCTCATTGTTGTCA

Orange F ATAATTTCTGTCATGTTGGTTTCCA

Orange R CCCCCAGTTAAGAATCATTGATATAG

Kynurenine formamidase F CCATCTCGCTGGTCTAAGAGATTTCAGC

Kynurenine formamidase R TTTTTATCCGAAGCGCAAACTATGT

Slowpoke F GTTCACGGCCCTCAGATCTGCTCTA

Slowpoke R CCCCTTGATTGGTCTCAGAAACCTTG

doi:10.1371/journal.pone.0140484.t001

Fig 1. Descriptive analyses of the A. aquaticus transcriptome. A. The BLAST results reveal a wide range in matches for the top hits for each contiguous
sequence, which likely is a consequence of limited genomic resources for invertebrate systems. However, the crustaceanD. pulex is the species most
frequently detected in our dataset. B. Our integrated trancriptome assembly yielded contigs ranging in size from 21 bp to 3490 bp, with an average length of
500 bp. C. A sequence similarity analysis further confirms the identity of genes detected in our transcriptome owing to the high level of similarity (60–80%) for
each contig to their respective top hit. D. The reliability of gene identification in our transcriptome is further supported by the expect (or “e”) value distribution.

doi:10.1371/journal.pone.0140484.g001
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member of the class Brachiopoda (Daphnia), which diverged fromMalacostraca (A. aquaticus)
more than 380 MYa [26]. Additionally, the lower sequence similarity observed could be a result
of our contigs not representing full-length gene sequences, or instead, may be an indication of
substantial sequence divergence between our Asellus transcriptome and the available genomics
resources used in our comparisons. Furthermore, lack of accessioned genomic sequences for
arthropods (outside of Insecta) may account for the level of sequence divergence observed in
our analyses (Fig 1D).

We annotated broader functions of genes in the integrated transcriptome with Gene Ontol-
ogy (GO) terms using the Blast2GO program, which collects every available GO term based on
the assigned gene identity. Generally, sequences ~100–2500 bp in length were assigned gene
ontology terms, with the number of potential annotations ranging from 1–500 terms for each
gene (Fig 2A). Annotations were classified into three types of ontology: molecular function,
biological process, and cellular component (Fig 2B). In total, over 23,000 annotations were
denoted in our transcriptome, with a mean GO level of 6.921. We characterized the top 20
annotations represented in each of the three GO categories (Fig 2C). Among these annotations,
the terms most evident in the molecular function, biological process, and cellular component
categories were “protein binding”, “auxin biosynthetic process”, and “cytoplasm”, respectively.

SNP discovery
One of our goals in the transcriptome analysis was to generate additional SNPs for genotypic
studies. Towards this end, we screened all contigs with at least 4 reads for both cave and surface
samples and retained all SNPs that were either 100% present in the cave (or surface) morpho-
type but not present in the other morphotype. This approach selects for informative SNPs that
differentiate between the cave and surface populations. Using these parameters, we identified
1,326 SNPs (S1 Table) in 271 contigs with an average of 5 SNPs per contig.

If a SNP was fixed in the cave population and fixed in the surface population, but a different
allele, we would expect the sequenced hybrid individual (which is unrelated to the surface and
cave individuals) to be heterozygous for the two SNPs. Therefore, we selected only those SNPS
that were not present 0 or 100% in the hybrid, and obtained 742 SNPs comprising 162 different
contigs with an average of 4.5 SNPs per contig. With this, we have prioritized 742 SNPs for
possible use as genetic markers. These are candidate genetic markers because the utility of
these SNPs will depend on the frequency of the SNPs in the different populations. As these are
wild populations, we expect that a percentage of these SNPs will not be fixed either in the cave
or surface population. These SNPs could be used to add candidates to the existing linkage map
to see if they coincide with loci mapped previously for traits related to pigmentation and eye
morphology [17].

Gene placement on map
We had previously placed many candidate genes on our linkage map of A. aquaticus by cloning
a fragment of the gene using degenerate PCR, amplifying intronic or UTR sequence using Gen-
omeWalker or RACE, and then designing primers to amplify polymorphic fragments (e.g.,
SNPs or size-length differences) between the cave and surface populations [17]. Then, we used
these genetic markers to genotype a backcross composed of 194 animals using iPlex Extend
and MALDI TOF mass spectrometry (Sequenom). JoinMap 4 was used to generate the linkage
map [17].

Transcriptome sequencing can be used to identify polymorphic markers in genes of interest;
this method identifies many candidates at once, and should identify genes that might not have
enough conserved regions to design degenerate primers. To determine the location of the gene/
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contig on our current map, a subset of the individuals from the pedigree used to generate the
linkage map can be genotyped [17] and the genotypes of the new makers and previous markers
compared.

We leveraged this powerful approach to identify candidate genes for eye and pigmentation
traits and place them on our linkage map. Here, we describe the addition of four new genes.
We initially picked these four genes because we had prioritized the majority of them for our
initial mapping study and were unsuccessful in obtaining sequence using degenerate PCR. In
the future, we would like to add many more genes to the existing linkage map. We found the
orthologue of orange, a gene in the AP-3 (adaptor protein 3) complex that has a role in cargo
selective transport, in Drosophila melangaster [27]. Drosophila melanogastermutants in the
AP-3 complex harbor reduced numbers of pigment granules and decreased levels of pigment
in those granules [27]. Orange was found in all four of the A. aquaticus transcriptomes. In addi-
tion, we obtained a sequence for the A. aquaticus orthologue of ruby, also an AP-3 complex
member in D.melanogaster [27]. Another method used to identify candidates was Phylogeneti-
cally Informed Annotation (PIA), which annotated our transcriptome for 109 genes from the
light interaction toolkit (i.e. a set of genes with roles in vision, eye morphology, and pigmenta-
tion; [19]). Nineteen of these 109 genes were found in at least one of the A. aquaticus samples:
Arr1, Gbeta76C, Gprk2, Gnat1, pinta, clot, Dhpr, Pcd, punch (Pu), rosy (ry), sepia (se), cinnabar
(cn), Kfase, vermilion (v), Alas, l(3)02640, Aldh, lark, and slowpoke [19]. Many factors likely
contribute to the lack of certain genes from the light interaction toolkit in our transcriptomes

Fig 2. A. aquaticus gene ontology (GO) term analysis. A. Generally, gene ontology (GO) terms were assigned to sequences ranging in length from ~100
bp to ~2,500 bp. B. Over 23,000 gene ontology terms were associated with genes in the A. aquaticus transcriptome, with a median GO level of 6.921. C. The
top 20 gene ontology terms represented in our transcriptome for each GO category: molecular function, biological process and cellular component.

doi:10.1371/journal.pone.0140484.g002
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including small sample size, the sequencing technology used, and the age/ stage of individuals
sequenced. Of the nineteen genes identified by transcriptome sequencing, fourteen genes had
not previously been placed on the A. aquaticus linkage map [17]. We chose to add four new
genes to the map, kynurenine formamidase, slowpoke, ruby, and orange. Kynurenine formami-
dase is in the ommochrome synthesis pathway [28]. There is evidence in other species of iso-
pods, including an isopod in the same genus as A. aquaticus, A. intermedius, that
ommochromes are the integumental pigments [29, 30, 31]. Kynurenine formamidase was
found in the surface head transcriptome only. Slowpoke is a gene involved in the circadian
clock [32]. Slowpoke was found in all four A. aquaticus transcriptomes.

We placed ruby to one of the eight Asellus aquaticus linkage groups, linkage group 6 near
markers aa98 and aa58 which was not near any mapped loci. Similarly, we placed orange to
linkage group 5 with identical genotypes from aa36 to aa15 10.4 cM away from the locus
responsible for red versus orange/brown pigmentation (Table 2). We genotyped slowpoke for
16 individuals from the cross and found that the SNPs emerged with 100% agreement in one
area on the map, LG7 near aa33-aa113 (Table 2). This location is near the ‘presence versus
absence of eye’ locus. Similarly, we used the sequenced fragment of kynurenine formamidase to
identify a polymorphic marker between cave and surface individuals. We found that this gene
was placed on linkage group 2, near the markers aa56 and aa74, and near the locus responsible
for presence versus absence of pigmentation (Table 2). We had found previously that multiple
other promising candidates also map to this location on linkage group 2 such as white, scarlet,
and pale.White and scarlet are involved in ommochrome transport [33] and, as mentioned
above, ommochromes could be responsible for the integumentary pigment in A. aquaticus.
Alternatively, melanins could also be the cause of integumentary pigment in A. aquaticus. Pale
is involved in melanin synthesis and Drosophilamutants in pale are devoid in pigmentation
[34]. In addition, cave plant hopper pigmentation can be rescued by the addition of one of the
substrates in the melanin pathway, L-DOPA [35]. Future analyses, including sequencing of the
coding region or quantifying allele-specific expression in hybrids to look for regulatory differ-
ences, can determine if any of these genes, including kynurenine formamidase, cause the ‘lack
of pigmentation’ phenotype. In addition, placing multiple genes on the map will help anchor
the linkage map if transcriptomes or genomes from a closely related species with synteny to A.
aquaticus are sequenced. Furthermore, increasing the number of candidate genes on the map
will help in future QTL analyses investigating additional traits and/or additional populations.

Our analysis of adult transcriptomes resulted in resources that will help identify genetic dif-
ferences between cave and surface populations. However, future sequencing of embryonic sam-
ples could be even more illuminating for eye and pigmentation traits depending on what genes
are actually mutated and if these genes play a larger role during embryonic development than
they do post-embryonically.

Allele-specific expression in the hybrid sample
Cis-regulatory changes are thought to play an important role in evolutionary change [36].
Therefore, we wanted to identify genes with potential cis-regulatory differences between cave
and surface forms. To identify cis-regulatory differences between cave and surface populations,
we can take advantage of the fact that our hybrids contain at each locus one allele from a cave-
dwelling parent and the other allele from a surface-dwelling parent. If there is significantly
higher expression in that hybrid animal of one allele over another, one possibility is that the
pattern is due to a cis-regulatory difference in the focal gene. As described in other studies, we
expect regulatory changes acting in cis to result in allele-specific expression but regulatory
changes in trans to not differentially affect both alleles [37, 38]
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To identify putative genes with allele-specific expression, we first screened our dataset for
all contigs/genes containing a depth of at least four reads in both cave and surface samples
using ArrayStar (DNASTAR.v.11.0). Then, we identified SNPs with 100% fixed differences
(i.e., invariant) between the surface and cave forms. This resulted in SNPs that were likely
homozygous in the surface individual and likely homozygous but different in the cave individ-
ual. For our analysis, we defined an “allele” as a contig/gene where the hybrid individual that
had at least 3 SNPs that clearly demonstrated a surface or cave bias for all 3 SNPs present. In
F1 hybrids, individuals have one allele from the cave and one from the surface parents. In a sce-
nario in which both alleles are expressed equally, we would expect ~50% detection of each allele
in our dataset. Therefore, we reasoned that a substantial departure from this null would be
alleles demonstrating 0–30% or 70–100% surface or cave bias. Finally to ensure accurate allele-
calling in the hybrid, we further filtered our dataset to only include contigs with a minimum of
6 reads per hybrid sample, and only included genes that were unique in the transcriptome (i.e.,
no redundancy). These parameters resulted in very few genes showing a morphotype-specific
pattern, owing to the low read number per contig (see Methods). This analysis yielded five con-
tigs, bifunctional aminoacyl tRNA synthetase, tnf receptor associated, glutathione s transferase
mu 5 like isoform, peroxiredoxin-1, and chymotrypsin like protein showed a bias for one allele
over the other using the above parameters (Fig 3; S1, S2, S3, and S4 Figs; Table 3). Future stud-
ies utilizing additional individuals and increased sequencing depth will continue to clarify the
cave vs. surface allelic expression pattern of these genes in hybrid A. aquaticus offspring.

Because our transcriptome sequencing was performed in adult individuals, any putative
allele-specific expression differences observed would likely explain adult phenotypes. Only a
limited number of traits have been explored in adult animals, so many of the physiological,
developmental, morphological and behavioral differences between the two populations remain
uncharacterized. However, common cave characteristics include the presence of fewer but
larger eggs, decreased metabolic rate, and increased longevity [7]. Therefore, it is not surprising
that within our five genes showing allele-specific differences, we found GO term functions
such as ‘oxidation-reduction processes’ and ‘hydrolase binding’. Particularly interesting are
peroxiredoxin-1 related protein because of peroxiredoxins’ roles in longevity in flies [39] and
chymotrypsin, a digestive protease, that could may be implicated in metabolic differences
between cave and surface forms.

There are multiple reasons that one allele could have a greater number of reads than
another. These reasons include methodological error, regulatory differences between popula-
tions, and parental imprinting [40]. First, we list these candidates as putative genes with allele
specific differences because of the following limitations of our methodology: We used a 6X cov-
erage because we had on average, few reads per contig, a result of using 454 technology.

Table 2. Candidate gene placement on Asellus aquaticus linkagemap.

Gene Number of
individuals
genotyped

Markers in agreement Markers with one
recombinant

LG of markers in
agreement

Mapped loci nearby

Ruby 8 aa98 and aa58 6 No

Orange 13 aa36, aa42, aa38, aa20,
aa53, aa91, aa118, and
aa15

5 10.4 cM away from red vs
orange/brown pigmentation

Kynurenine
formamidase

15 aa56, aa74 2 Within eye size and presence
versus absence of pigmentation

Slowpoke 15 aa33, aa40, aa37, aa19,
aa70, aa113

7 11.7 cM away from eye
presence versus absence

doi:10.1371/journal.pone.0140484.t002
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Fig 3. Allele-specific expression of Peroxiredoxin-1 in a hybrid sample reveals bias for the cave-
dwelling allele. A. Three SNPs were present for the contig corresponding to Peroxiredoxin-1. Written first is
the surface nucleotide, then the position, and then the cave nucleotide. B. Shown are the number of reads for
the cave, surface, and hybrid samples and the corresponding allele, either cave or surface, for each of the
reads. The cave allele is shown in red and the surface allele in black. Below the reads is written whether the
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Because of the low coverage, there could be false positives in our list. In addition, the allele-call-
ing was based on three individuals and additional sampling is necessary to confirm that a par-
ticular allele is fixed in each population. Furthermore, it is possible that single contigs contain
multiple paralogues. Finally, the bias in expression within hybrid individuals could be an arti-
fact of one of the alleles being preferentially sequenced, or a bias in the inclusion of alleles in
the alignment. This would be more of an issue if we were mapping the reads from the hybrid to
a reference transcriptome composed solely of reads from one population, for example, just the
surface population [40]. However, this should not be an issue, because our de novo assembly is
composed of both surface and cave reads. Regarding parental imprinting, additional experi-
ments could sequence hybrids resulting from cave females and surface males, the opposite
polarity of the hybrid cross implemented in this experiment. Future experiments will test these
putative allele specific differences by RT-PCR or RNAseq in multiple hybrid individuals. Addi-
tional experiments will also produce a larger number of reads, allowing the use of established
computational tools for examining allele specific expression [41, 42].

Furthermore, future experiments will examine differences in gene expression between sam-
ples, for example between animals from cave and surface populations. As we only sequenced
one individual per population in this study, we were unable to compare gene expression levels
between populations. However, sequencing multiple samples per population, in our next
experiments, may allow us to investigate genes with differential expression and thereby identify
both mutated genes and pathways important in the morphological and behavioral differences
between the populations.

Conclusion
We describe the first transcriptomic analysis of cave and surface dwelling populations of the
isopod crustacean, A. aquaticus. Our approach led us to discover thousands of new genetic
sequences for this system. We used new information on sequence variation between cave and
surface populations to identify SNPs that were then used as genetic markers. We added four
additional candidates to an existing linkage map, and three of these genes co-localize near asso-
ciations with eye size and pigmentation variation. We further utilized this dataset to identify

surface and cave alleles encode different amino acids. The first and third SNPs are sense mutations and the
second results in an amino acid change.

doi:10.1371/journal.pone.0140484.g003

Table 3. Putative genes with allele specific differences.

Contig number and gene
identity

Functional gene ontology (GO) category Allele specific
bias towards

Contig 2687 peroxiredoxin 1
like

P:cell redox homeostasis; C:cytosol; F:peroxiredoxin
activity; P:oxidation-reduction process; F:peroxidase
activity

Cave allele

Contig 2732 bifunctional
aminoacyl tRNA synthetase

F: sumo binding; F: aminoacyl-tRNA ligase activity;
P:tRNA aminoacylation for protein translation

Cave allele

Contig 2861 tnf receptor
associated

F:metal ion binding; P:regulation of apoptotic
process; F:zinc ion binding; P:signal transduction; F:
protein binding; F:receptor activity; F:transferase
activity

Cave allele

Contig 3844 glutathione s
transferase mu 5 like isoform

F:transferase activity Cave allele

Contig 644 chymotrypsin like
protein

F:hydrolase activity Surface allele

doi:10.1371/journal.pone.0140484.t003
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putative allele-specific (cave versus surface) differences within a hybrid individual, suggesting
that there may be a bias for certain alleles in genes including peroxiredoxin 1.

This report dramatically increases the genetic resources available for A. aquaticus and pro-
vides an emerging invertebrate model of cave adaptation. This genetic sequence information
will enable identification of genes and prospective genetic changes associated with differences
between cave- and surface-dwelling populations. Further, a deeper understanding of the
genetic changes responsible for morphological and physiological variation between cave and
surface forms of A. aquaticus will ultimately enhance our knowledge of how cave animals have
evolved to live in the subterranean environment.

Supporting Information
S1 Table. SNPs from transcriptomic analysis.
(XLSX)

S1 Fig. Putative allele-specific expression of Glutathione s transferase mu 5 like isoform in a
hybrid.Multiple SNPs are present within the contiguous sequence predicted as Glutathione s
transferase mu 5 like isoform. The surface allele reads are in black and the cave allele reads in
red.
(TIF)

S2 Fig. Putative allele-specific expression in Bifunctional aminoacyl tRNA synthetase. The
contig corresponding to Bifunctional aminoacyl tRNA synthetase demonstrates three SNPs.
(TIF)

S3 Fig. Putative allele-specific expression for Tnf receptor associated. Shown are numerous
SNPs detected in the contig for Tnf receptor associated.
(TIF)

S4 Fig. Putative allele-specific expression for Chymotrypsin like protein. Five SNPs are
shown in Chymotrypsin like protein.
(TIF)
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